Anti-periodic BVP for Volterra integro-differential equation of fractional order 1 < α ≤ 2, involving Mittag-Leffler function in the kernel
نویسندگان
چکیده
In this paper, we consider an anti-periodic Boundary Value Problem for Volterra integro-differential equation of fractional order 1 < α ≤ 2, with generalized Mittag-Leffler function in the kernel. Some existence and uniqueness results are obtained by using some well known fixed point theorems. We give some examples to exhibit our results. c ©2016 All rights reserved.
منابع مشابه
An Integro-differential Equation of Volterra Type with Sumudu Transform
In this paper a closed form solution of a fractional integro-differential equation of Volterra type involving Mittag-Leffler function has been obtained using straight forward technique of Sumudu transform. Some particular cases have also been considered.
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملMittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملDiscontinuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity
An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimate...
متن کامل